MIT 6.01SC Introduction to Electrical Engineering and Computer Science IThis course provides an integrated introduction to electrical engineering and computer science, taught using substantial laboratory experiments with mobile robots. Our primary goal is for you to learn to appreciate and use the fundamental design principles of modularity and abstraction in a variety of contexts from electrical engineering and computer science.
Our second goal is to show you that making mathematical models of real systems can help in the design and analysis of those systems. Finally, we have the more typical goals of teaching exciting and important basic material from electrical engineering and computer science, including modern software engineering, linear systems analysis, electronic circuits, and decision-making.
Here we emphasize the fact that a computer program is not an algorithm. Rather, a computer program is just one way of expressing an algorithm. Computer languages are just a means of expressing in syntax what we want the computer to do. Understanding this important nuance is essential as you delve into the algorithms we explore in this unit. For instance, sorting is not a matter of computer programming but a matter of algorithm development. It is true that ultimately, the computer has to be made to carry out the task at hand. However, we must start with an algorithm (what we want the computer to do), not with a computer program (how we make a computer do something). Otherwise, the computer becomes a limitation instead of an aid. This lecture also discusses document distance, which will be important for several examples in later lectures.
This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems.
MIT introductory course on deep learning methods with applications to computer vision, natural language processing, biology, and more! Students will gain foundational knowledge of deep learning algorithms and get practical experience in building neural networks in TensorFlow. Course concludes with a project proposal competition with feedback from staff and panel of industry sponsors. Prerequisites assume calculus (i.e. taking derivatives) and linear algebra (i.e. matrix multiplication), well try to explain everything else along the way! Experience in Python is helpful but not necessary. This class is taught during MITs IAP term by current MIT PhD researchers. Listeners are welcome!